


Introduction 

The statistical properties of physiological fluctuations, such as found in the time series for
heartbeat dynamics (1), respiration (2) , human locomotion (3; 4) and posture control (5), have
been the focus of interdisciplinary research for more than  two decades (6) . The rationale for
this persistent interest has been twofold: to better understand complex self-regulatory control
systems that produce such fluctuations (7) and to describe their dynamics with tools capable
of capturing their nonlinear and/or non-stationary character (7).  One outcome of this research
has  been  a  profound  change  in  our  understanding  of  the  significance  of  homeostasis.
Homeostasis  –  an organism's  tendency to maintain  approximately constant  values  of vital
biological  parameters,  such  as  heart  rate  or  blood  pressure,  has  been  the  cornerstone  of
modern physiology since the turn of the twentieth century. However, the discovery of fractal
and multifractal  properties in physiological time series has lead to the conclusion that the
intrinsic  variability  of  many  physiological  phenomena  reflects  the  adaptability  of  the
underlying motorcontrol systems  (8; 9). 

This  change  of  paradigm,  associated  with  how  we  view  the  dynamics  of  physiologic
phenomena, has not, to date, significantly influenced the studies of fluctuations in cerebral
hemodynamics.  In  particular,  the  interpretation  of  the  fluctuations  in  either  intracranial
pressure (ICP) or blood flow velocity in major arteries, remains unaltered. The slow adoption
of ideas implemented earlier, for example, in cardiac dynamics, is to some extent surprising,
taking into account that ICP monitoring has long been the fundamental component of critical
care  management  of  patients  with  severe  brain  injury.  Moreover,  transcranial  Doppler 
ultrasonography (TCD),  which  allows  physicians  to  noninvasively  study  cerebral  blood
flow velocities, is by now routinely employed  in clinical practice.

A healthy human brain is perfused  with blood flowing laminarly through cerebral vessels,
providing brain tissue with substrates such as oxygen and glucose. It turns out that cerebral
blood flow (CBF) is relatively stable with typical values between 45 and 65 ml/100g of brain
tissue  per  second,  despite  variations  in  systemic  pressure  as  large  as  100  Torr.  This
phenomenon is known as cerebral auto-regulation and has been thoroughly documented not
only in humans, but also in animals (10). Auto-regulation, which is mainly associated with
changes in cerebrovascular resistance (CVR) of small precapillary brain arteries, is only one
of  at  least  four  major  mechanisms  that  regulate  CBF.  A  considerable  body of  evidence
suggests that CBF is influenced by local cerebral metabolic activity. As metabolic activity
increases so does flow and vice versa (11). The actual coupling mechanism underlying this 
metabolic regulation is unknown, but most likely it involves certain vasoactive compounds
such as adenosine, potassium, prostaglandins (11; 12), which are locally produced in response
to  metabolic  activity.  External  chemical  regulation is  predominantly  associated  with  the
strong influence of CO2 on cerebral vessels (13; 14). An increase in carbon dioxide arterial
content leads to vasolidation, which in turn boosts CBF, while a decrease in CO2 produces
mild vasoconstriction and slows down CBF. The impact of the sympathetic nervous system on
CBF is often ignored but intense sympathetic activity results  in vasoconstriction . This type of
neurogenic  regulation  can  also  indirectly  affect  cerebral  flow  via  its  influence  on  auto-
regulation. The complex  CBF regulation mechanisms are influenced, or even fundamentally
altered,  in  many  pathological  states.  However,  the  research  interest  has  so  far  been
predominantly focused on auto-regulation.  This emphasis is justified since the human brain is
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very susceptible to even short periods of ischemia. Thus, CBF must be maintained to ensure
constant delivery of oxygen and glucose, as well as, the removal of metabolites. 

The cerebral perfusion pressure (CPP) is the pressure gradient that drives CBF. CPP is defined
as  the  difference  between  the  arterial  blood  pressure  (ABP)  and the  intracranial  pressure
(ICP).  The breakdown of auto-regulation makes the brain  vulnerable  to  changes in  blood
pressure.  A  far  more  dangerous  disruption  of  CBF  is  associated  with  cerebral  edema
following trauma or  major  intracranial  disease.  This  is  because  the  skull  is  essentially a
closed, bony box with constant volume filled with brain tissue, blood and cerebrospinal fluid. 
Since  all  three  components  are  incompressible,  if  the  brain  enlarges,  some  blood  and/or
cerebrospinal fluid must be forced out of the skull, to prevent an increase in ICP. However,
when  the  pathological  swelling  progresses  this  compensatory  fluid-loss  mechanism  is
eventually exhausted, and the ICP rapidly rises.  This rise in pressure leads to a reduction of
perfusion pressure to the point at which  CBF falls below the ischemic threshold. To prevent
neuronal death (secondary brain injury) CPP must be maintained by lowering the intracranial
pressure  and/or  boosting  mean  arterial  pressure.  It  is  apparent  that  the  simultaneous
measurement of the ICP and ABP is the basis of brain injury management.  

The fundamental problem  is to determine the best measure of auto-regulation integrity. In
two-point static methods one measures mean blood flow velocity in cerebral arteries before
and after the sustained stimulus generated by blood pressure changes, elevated concentration
of carbon dioxide or application of Acetazolamide  (15-18). Due to advances in  TCD it is
now feasible  to  monitor  the  evolution  of  cerebral  blood  velocity ,  triggered  by  transient
arterial  pressure changes.  The analysis of such evolution constitutes the foundation of so-
called dynamical methods.  For example, in the classical approach of Aaslid et al. (19) a step-
wise drop in arterial blood pressure of about 20 Torr  can be induced  by rapidly deflating
thigh  blood  pressure  cuffs  that  have  been  inflated  above  the  systolic  pressure  for
approximately 2 min. After the cuffs’ deflation ABP remains low for about 10 seconds, then
returns gradually to its original level.  Under physiological conditions, blood flow velocity in
the middle cerebral artery (MCA) measured with TCD, initially decreases simultaneously with
ABP by about 20%.  However, after about one second auto-regulatory mechanisms become
active and initial mean flow velocity is restored within 5 seconds. The relationship between
cerebral blood flow velocity  changes induced by arterial blood pressure manipulations has
been studied  most  frequently  using either  a  differential  equation  approach  (20;  21)  or  a
transfer  function analysis.  Employing a second order linear differential  equation model  of
response to a rapid blood pressure drop, Ticks et al. (22) graded  the response  time of auto-
regulation system using the  ARI index. ARI varies between 0 (absence of auto-regulation)
and  9  (very fast  response).  Transfer  function  analysis  (23-25)  sheds  light  on  dynamical
properties of cerebral auto-regulation  from a different perspective.  Within this framework,
cerebral  auto-regulation  is  considered  a  high-pass  filter  which  transmits  rapid  changes  in
blood pressure,  but  dampens  and delays low-frequency perturbations.  Variations  of blood
pressure are the filter’s input and cerebral velocities are its output. More specifically, this type
of physiological filtering  is quantified for  a given frequency  as a phase shift between the real
and imaginary part of the complex transfer function. A phase shift that is close to zero, at
frequencies which are usually dampened, are interpreted as a loss of cerebral auto-regulation.
The  application  of  dynamical  methods  has  enabled  the  elucidation  of  the  impairment  of
cerebral auto-regulation associated with carotid artery stenosis (26) and traumatic head injury
(27). 

It is worth pointing out some limitations of the existing dynamical methods. In about 20% of
the cases studied,  deflation of thigh cuffs does not produce a sufficient fall in blood pressure. 
In patients  with  critical  cerebrovascular  hemodynamics,  such  as  premature  newborns  and



individuals  suffering  from  heart  or  autonomic  failure,  blood  pressure  drops  may  be
hazardous.  Consequently,  the  search  for  auto-regulation  tests  which  do  not  involve
manipulations of ABP are the focus of the present research .

Material and methods

Experimental procedures
For 20 healthy subjects  beat to beat finger arterial blood pressure was noninvasively  recorded
for  at least 45 minutes (Finapres, Ohmeda). Subjects remained in a supine positions with their
heads slightly elevated.  MCA blood flow velocity (MCAfv) were measured  in another group
of 20 healthy  volunteers without cerebrovascular  risk factors  using the Multidop T DWL
Elektronische  Systeme ultrasonograph.  The  2-MHz Doppler  probes  were  placed  over  the
temporal windows and fixed at a constant angle and position. The measurements were taken
continuously  for  at  least  two  hours  in  the  subjects  at  supine  rest.  The  long-term  ICP
monitoring of  15 patients  with traumatic brain injuries   was done with either a ventricular
catheter  or  parenchymal  fiber-optic  pressure  transducer.  The  data  acquisition  setup  is
described in Appendix I.

Determination of scaling properties
Detrended   Fluctuations  Analysis  (see  (28)  and  references  therein)  is  commonly  used  to
determine scaling properties of physiological time series.  Its main drawback is associated
with  strong  susceptibility   to  periodic  trends.  Periodic  components  are  prevalent  in
hemodynamics  of  patients  with  severe  injuries  (29)   and  consequently  it  is  necessary to
employ method free of this deficiency.

Let us consider the wavelet transform of self-affine function )(ty :
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and  )(t   is the analyzing wavelet (mother function). If y (t) is the self-affine function then
Hccty /)( has the same statistical properties:
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Inserting [3] in to [1] we obtain:
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leads to the expression which may be readily employed to determine the scaling exponent H :
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Specifically, one determines   1/2 +H  as a slope of   linear fit   to )]([ ayW  as a function  of a
in double logarithmic plot. This approach to determination of scaling exponents is known as
Average Wavelet Coefficient (AWC)  method (30).

Phase synchronization 

Let us consider two signals )(1 ts  and )(2 ts  and their corresponding instantaneous phases 1
and 2  . The phase synchronization  takes place when:

constmn  211  ,                                [7]

where n, m are integers indicating the ratios of possible frequency locking. Herein we consider
only the simplest case 1 mn . Furthermore, as with most biological signals contaminated
by noise we are forced to search for approximate phase synchrony, i.e.

.)()( 21 consttt                                 [8]

Thus,  the studies  of  synchronization involve not only the determination of instantaneous
phases of signals but also introduction of some statistical measure of phase locking (31).

The instantaneous phase  )( 0t  of a signal  s can be readily extracted by calculating wavelet
transform with complex mother function (cf. [1]):
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We characterize the stability of phase difference 21    with the help of the index γ:
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derived from the Shannon entropy:
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In the above formula  N  is the number of bins,  kp  is the relative frequency of finding the
phase difference within  the k-th bin. Due to normalization in [10], 10   .γ=0 corresponds
to  uniform  distribution  of  phase  differences  (no  synchronization)  while  γ=1  to  perfect
synchronization.



Results and discussion

Fig. 1 shows the DFA analysis of arterial blood pressure fluctuations of a healthy subject. It is
apparent  that  the scaling  properties  are  characterized by two exponents.   The  short-time
scaling exponent  (STSE) determines  the  statistical  properties  of  fluctuations  in  short-time
intervals while the Hurst exponent describes the long-term fractal properties.  In Fig. 2 we
present  the  example  of   fractal  analysis  of   MCA  blood  flow velocity  time  series.  The
comparison of Fig. 1 and Fig. 2  suggests that the statistical properties of  arterial pressure and
cerebral fluctuations are similar. Specifically,  the mean value of arterial short-time exponent
STSEABP=1.37 ± 0.13  and the mean value of the cerebral exponent STSETCD=1.35 ± 0.12 are
not statistically different as indicated by the corresponding boxplot (Fig. 3) and the outcome
of  Welch’s variant of t-test (p=0.44). It turns out that in physiological conditions intracranial
pressure time series exhibits similar statistical properties  (Fig. 4).  However, in patients with
traumatic  brain injuries (TBI)  the nature of autoregulation  may profoundly changes. Fig. 6
show four  ICP waveforms of a TBI patient who underwent the active control of perfusion
pressure.  For each waveform we selected  three  segments (marked A, B or C)  and calculated
the values  of the mean intracranial pressure, mean pressure at the percussion peak ICPP  and
the short-time index STSEICP.   The analysis of data  data collected in Table I might strongly
indicate the influence of elevated intracranial pressure on the value of STSEICP.   In particular,
STSE seems to decrease with growing ICP. However, in Fig.  6 we present  autocorrelation
function and mutual information for arterial and intracranial pressure time series.  The strong
oscillations of both autocorrelation and mutual information indicates the presence of strong
pathological periodic component which may render the DFA calculations inaccurate. Fig. 7
gives  example  of  AWC  calculations  for  arterial  blood  pressure  fluctuations  (a)  and
intracranial  pressure  fluctuations  (b).  It  is  apparent   that  the  influence  of  low-frequency
pathological oscillations is limited to narrow interval indicated by the arrows. In Fig. 8 we
point out to another difficulty associated with the application of DFA. The maximal value of
the STSE which may be reliably determined depends on the order of the polynomial used to
eliminate local trends. We generated  two-scale Mandelbrot functions with values of STSE
varying  from 1.5 to 3.5 and fixed value of the Hurst exponent. Then, we estimated the value
of  STSE using DFA (first and second order) and AWC. The advantage of AWC over DFA is
obvious ( the correct estimates should fall in this figure along the diagonal). We performed the
AWC calculations using 30 ABP and ICP waveforms obtained from 15 different patients and
we found that the average value of AWC

ABPSTSE  to be equal to 53.056.1   and the average value
of AWC

ICPSTSE  to be equal 45.099.1  .  Thus, in traumatic brain injury the values of the short-
time scaling exponents no longer coincide. To verify whether the observed affect is directly
related to changes in  cerebral autoregulation integrity we performed the preliminary studies
of  phase synchronization between ABP and ICP time series.  It turns out that for moderately
elevated intracranial pressure the phase difference slowly evolves in time (Fig. 9). However,
high intracranial pressure may lead to synchronization of arterial  and intracranial  pressure
signals.  Such  pathological  synchronization  may persist  even  for  several  hundreds  cardiac
beats (Fig. 10) and is reflected by the vary high value of the corresponding Shannon entropy.
The detailed data analysis is presented in two papers  which  are the   results of this research
project.  Further  studies  should  closely  examine  the  relationship  between  the  clinical
information  furnished  by  the  scaling  exponents  and  that  provided  by  the  phase
synchronization analysis. We gratefully acknowledge the financial support of the ARO which
made this research possible.
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 Figures

Fig. 1 (a)  Time series of arterial blood pressure (averaged over a cardiac beat) of a healthy
subject.  First 1000 values of the time series are shown. (b) Detrended fluctuation
analysis (DFA)  of the time series shown in (a).

Fig. 2  (a) MCA flow velocity (averaged over a cardiac beat)  time series for a healthy subject.
            First 1000 values of the time series are shown. (b) Detrended fluctuation analysis  of

the time series shown in (a).

Fig . 3  Side-by-side boxplot  for the values of the short-time scaling exponent (STSE) of  
            fluctuations of arterial blood pressure (measured  noninvaisively with Finapres)  and   
            fluctuations of MCA blood flow velocities  (measured  noninvaisively with TCD).  It 
            is apparent that the differences are not statistically significant.



Fig. 4 (a)  Time series of intracranial  pressure (averaged over a cardiac beat) of a  patient with
traumatic brain injury. First 1000 values of the time series are shown.  Intracranial
pressure remained at level during measurement.  (b) Detrended fluctuation analysis  of
the time series shown in (a).

Fig. 5. (a)-(d) Time evolution of intracranial pressure obtained during long-term monitoring 
            of a patient with traumatic  brain injuries.  The values of the STSE for the segments 

            marked A, B, C in each figure  are given in Table I.



.

Fig. 6.  Autocorrelation  function and mutual information for:  (a) arterial blood pressure time
series, (b)  ICP time series (physiological value of mean intracranial pressure), (c) and
(d) ICP time series (high value of mean intracranial pressure associated with traumatic
brain injury).

`

Fig. 7.  Average wavelet coefficient (AWC) analysis of (a) arterial blood pressure
fluctuations, (b) intracranial pressure fluctuations.  The influence of low-frequency
pathological oscillations is limited to narrow interval indicated by the arrows.



Fig. 8.  Comparison of the accuracy of determination of  STSE  for two-scale Mandelbrot
function. Circles correspond to AWC (Morlet wavelet). Boxes and crosses to  first
order DFA and second order DFA, respectively. Accurate estimates should 

             fall along the diagonal.

Fig. 9.  Analysis of phase synchronization between  fluctuations of (a) arterial blood pressure
and (b) intracranial pressure. Figure (c) shows the value of  strength of synchronization
γ as a function of scale a, contour map (d) displays normalized phase difference, (e) is
the  plot of normalized phase difference for a=30. Week synchronization suggests
adequate cerebral autoregulation. 



Fig.  9. Analysis of phase synchronization between  fluctuations of (a) arterial blood pressure
and (b) intracranial pressure. Figure (c) shows the value of  strength of synchronization
γ as a function of scale a, contour map (d) displays normalized phase difference, (e) is
the  plot of normalized phase difference for a=30. Strong synchronization indicates the
failure of  cerebral  autoregulation. 



     Tables

N ICP ICPP STSEICP

 A         B          C     A          B          C   A         B          C
1  13.9     13.0     13.0   18.2      16.9     17.7  1.3       1.3        1.3
2  16.4     19.8       9.2   26.6      30.1     12.3  0.5       0.6        1.2
3  21.1     18.8     17.8   35.2      30.8     26.9  0.4       0.6        1.0
4  20.8     13.5     19.2   33.7      20.4     14.3  1.0       1.1        1.5

Table I. The values of short-time scaling exponent for the time series recorded during the
long-term monitoring of a patient with traumatic brain injury (cf. Fig. 5). For each
segment the  mean value of ICP and the mean value of intracranial pressure at the
percussion peak  ICPP is also given.
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Appendix  I.   Data acquisition  setup.

                              

ICP transducer is  connected to the patient  monitor  via  the  Codman ICP Express digital
intracranial monitor. The measurement of blood flow velocity in selected  cerebral artery is
performed simultaneously with  ICP, ABP, and ECG monitoring.   The National Instruments
measuring board is used to store analog signals on a PC.          
                                                                                                                             

                                        The screenshot  of the data acquisition software
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